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INTRODUCTION
Synchronization of projective frames is a method
of integrating sets of projectively reconstructed
matrices in such a way that they differ from the
true reconstruction by a single global projective
transformation.
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FUTURE RESEARCH

The method based on tracking the 3D points from
the final projective matrix, this way the relation
between the image points and the projective ma-
trices can be analyzed.

Explore the analogy between computing epipolar
scales and the reconcilement of essential matrices,
and try to extend it to fundamental matrices.
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RESULTALGORITHM
• Feature points are extracted and grouped

into combination of triplets using RANSAC.
• For sets of { xi↔ x′i↔ x′′i } projective recon-

struction P i
j is done.

• The Transformation T is computed for
global matrix Z.

• The synchronization method is used sparse
Eigen decomposition, complex terms are re-
moves using least square method.

• Compute the projective matrices after trans-
formation. P̂ = P i

j * U
• Single averaging method is used to get the

final Projective matrices P̂1,P̂2...P̂n.

PROJECTIVE RECONSTRUCTION
Assuming a pinhole camera model equation as,

λij xij = Pi Xj (1)

Let two reconstructions be {Pa, Pb, Pc} and
{P ′a, P ′b, P ′d}with unknown collineation T as,

Pi T ' P′i (2)

After vector column-wise arrangement as,

vec(Pi T) ' vec(P′i) (3)

Let a in Rn be vec(P ′i ), we have

Bi =


01×(i−1) −ai+1 ai 0 0 . . . 0
01×(i−1) −ai+2 0 ai 0 . . . 0
01×(i−1) −ai+3 0 0 ai . . . 0
. . . . . . . . . . . . . . . . . .

01×(i−1) −an 0 0 0 . . . ai


(4)

[a]× =

 B1

B2

Bn−1

 (5)

vec(P ′i ) and vec(Pi T ) of Rn can be written as,

[vec(P′i)]× vec(Pi T) = 0 (6)

Using the properties of the Kronecker product,

[vec(P′i)]× (I4×4 ⊗ Pi)vec(T) = 0 (7)

Thus T is computed.

SYNCHRONIZATION
Let Γ = (G, z) be a graph for G = (V,E)

For a graph, U ∈ Cdn×d and Z ∈ Cdn×dn,

Z = UU−b (8)

U =


X−11

X−12

. . .
X−1n

 , U−b =
[
X1, X2, . . . Xn,

]
,

Z =


I T1,2 . . . T1,n
T2,1 I . . . T2,n
. . . . . .
Tn,1 Tn,2 . . . I


(9)

With adjacency matrix A,

ZA = (UU−b) ◦ (A⊗ 1d×d) ⇐⇒ ZAU = DU
(10)

where D sum of rows A and U is eigenvectors.

ZA =


I/ζ1 T1,2 . . . T1,n
T2,1 I/ζ2 . . . T2,n
. . . . . .
Tn,1 Tn,2 . . . I/ζn

 (11)

Ai,j =

{
1, if Ti,j known
0, otherwise

, ζk =
n∑

i=1

Ai,k (12)


