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Abstract

Synchronization of projective frames is a method of integrating group of projective reconstructed
matrices in such a way that they differ from the true reconstruction by a single global projective
transformation. In theory, many standard methods are available for the projective reconstruc-
tion but most method suffers from common drawbacks which requires multiple iterative process
and may not converge or only converge to a local minimum. To avoid such problems, we use a
technique called “Global Synchronization”. Synchronization is a method of obtaining a unique
solution of transformations, where the process is done by arranging the transformation between
each camera of different views in a global network and solving them using graph modeling.
The essence of the synchronization problem is thus modeled by a graph, where the cameras are
associated to the nodes, and the transformation to the edges. This method of solving problem
has appeared under various forms in different settings, such as sensor network localization,
formation control in the control system and robotics communities, structure from motion in
computer vision, and graph drawings in the discrete mathematics community. Thus our method
produces global results also we do not have to initialize any values prior to the process and our
method can also handle real world difficult cases like missing data in a unified manner. The un-
derlying thesis demonstrate the performance of the new algorithms on random image sequences
in synthetic data (both by adding image noise and missing data).

“Don’t take rest after your first victory because if you fail in second, more lips are
waiting to say that your first victory was just luck.”

- A.P.J Abdul Kalam
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Chapter 1

Introduction

Synchronization of projective frames is a method of integrating group of projective reconstructed

matrices in such a way that they differ from the true reconstruction by a single global projective

transformation. Projective reconstruction refers to the computation of the structure of a scene

from images taken with uncalibrated cameras, resulting in a scene structure, and camera motion

that differ from the true geometry by an unknown 3D projective transformation. In theory,

many standard methods are available for the projective reconstruction but most method suffers

from common drawbacks which requires multiple iterative process and may not converge or

only converge to a local minimum. To handle such problems, we use a optimal solution called

“Global Synchronization”.

In the field of science, with the pieces of information from single block or unit, there is always a

need for a better way to communicate with other units. This rule also applies with many new

technology like internet, cloud,etc. Such idea is utilized in this thesis work. Synchronization

is a method of obtaining a unique solution of transformations, where the process is done by

arranging the transformation between each camera of different views in a global network and

solving them using graph modeling. The essence of the synchronization problem is thus modeled

by a graph, where the cameras are associated to the nodes, and the transformation to the edges.

In general, monocular cameras can measure line of sight to the other cameras but are not able

to easily determine the distances and the position which leads to localization problem. As such,

this problem has appeared under various forms in different settings, such as sensor network

localization and formation control in the control system and robotics communities, structure

from motion in computer vision, and graph drawings in the discrete mathematics community.

Thus our method produces global results also we do not have to initialize any values prior to

the process and our method can also handle real world difficult cases like missing data in a

unified manner. The algorithm uses a simple feature extraction for images and uses for the

reconstruction process, thus we can increase the time cost. The applications of the work are

in the analysis of dynamical scenes where cameras are deployed in a static configuration or are

1



Chapter 1: Introduction 2

mounted on robots.

1.1 Objectives

This master thesis is a step ahead in a direction to develop a method to find reconstruction of

projective frames. This work aims to provide an overview and development on the performance

of synchronization in complex matrices. The final goal of the thesis work is to survey the

heterogeneous literature, study the conditions under which a projective reconstruction is made

and analyze synchronization problem. This can be achieved by:

• Researching the state of the art literature on using projective reconstruction and projective

factorization.

• Developing an analytical form to embed the synchronization problem.

• Implementing the method and validate the results in simulations.

• Experimenting the method on different sets of image data.

1.2 Document Organization

This thesis is organized into different chapters starting with a brief introduction about syn-

chronization of projective frames. Chapter 2 provides a detailed discussion on the background

about projective reconstruction. Then comes the description of the synchronization and related

work to the research in Chapter 3. The algorithm is discussed in detail in Chapter 4. Chapter

5 of the thesis highlights the setup, experiments and the results. Finally conclusion and future

work are addressed in Chapter 6.



Chapter 2

Projective Reconstruction

In this chapter, we consider the problem of projective reconstruction. Projective reconstruction

is a method of computing the structure of a scene from images or corresponding points taken

with uncalibrated cameras. This results in a scene structure and camera motion that may differ

from the true geometry by an unknown 3D projective transformation. The task of reconstruc-

tion is to determine the unknown quantities of configuration of the corresponding 3D points and

the locations of the cameras that projects the images. This gives the general idea behind the

projective reconstruction and the problem of estimating the projective transformation matrix.

The steps of recovery of the transformation between projective matrices are described in detail

and different types of transformations are shown in the Appendix A.

2.1 Projective reconstruction

Projective geometry is a study of non-metrical geometric properties that are invariant with

respect to projective transformations. Consider n stationary 3D points distributed in space as

Xj = [xj , yj , zj ]
T ∈ R3 where j = 1, ..., n. Under m projective cameras Pi where i = 1, ...,m,

the 3D point Xj is projected onto image points xij = [uij , vij ]
T ∈ R2. The vector xij represents

the image coordinates of the j-th 3D point seen in the i-th image. It is generally not possible

that every points will be seen in every image frame, so only a subset of all possible xij are given.

The projective reconstruction is to determine the camera projection matrices Pi and the 3D

point locations Xj such that the projection of the j-th point in the i-th image is the measured

xij . Assuming a pinhole (projective) camera model, this relationship is expressed as,

xij ' Pi Xj, (2.1)

where Pi is a 3 × 4 matrix of rank 3, Xj and xij are expressed in homogeneous coordinates,

and the equality is intended to hold only up to an unknown scale factor λij . Therefore, the

projection equation is give by,

λij xij = Pi Xj. (2.2)

3



Chapter 2: Projective Reconstruction 4

From the above equation, the projective matrix can be split to intrinsic and extrinsic parameters

of the camera which is given by,

P = K [R|t], (2.3)

where K is the intrinsic parameters which encodes the transformation in the image plane from

the normalized camera coordinates to pixel coordinates. t and R are the extrinsic parameters

which describes the position and angular attitude of the camera with respect to an external

world coordinate system.

To understand projective geometry in detail, we start with epipolar geometry. The epipolar

geometry describes the geometric relationship between two or more perspective views of the

same 3-D scene. Let us now consider corresponding image points xi and x′j of different camera

matrices Pi and Pj that must lie on particular image lines, which can be computed without

information on the calibration of the cameras. This implies that, given a point in one image,

one can search the corresponding point in the other image along a line. A 3D point and the

camera projection centers define a plane that is called epipolar plane and the line connecting

the camera projection centers is called the baseline. The baseline intersects each image plane in

a point called epipole. The two conjugate points xi and x′j , follows the two rays back-projected

from image points and they will intersect at the 3D scene point X. Thus, by using the baseline

and epipole the reconstruction of 3D point X can be found by solving,

er = ζi xi − ζj x′j, (2.4)

where ζi and ζj are the unknown depth of X. We can rearrange 2.4 as,

ζj =
(er × xi).(xi × x′j)∥∥∥xi × x′j

∥∥∥2 . (2.5)

Thus, using the depth values the 3D point can be reconstructed using:

X =

{
− P−1

1:3 P4

1

}
+ ζj

{
P−1

1:3 x
′
j

0

}
. (2.6)

The above description gives a detailed view of scene structure reconstruction and now we can see

about camera motion reconstruction. When intrinsic parameters are known, the the normalized

camera coordinates will be x← K−1 x and the relation between the corresponding image points

will be given by,

xt
i Ex′j = 0, (2.7)

where E = [t]×R is the essential matrix. When both intrinsic and extrinsic parameters are

known, then relation between the corresponding image points will be given by,

xt
i Fx′j = 0, (2.8)



5 2.1 Projective reconstruction

where F = [er]×Kr RK
−1
l is the fundamental matrix matrix. Thus epipolar geometry can be

described in several ways, depending on the amount of the prior knowledge about the stereo

system. We can identify three general cases.

• If both intrinsic and extrinsic camera parameters are known, we can describe the epipolar

geometry in terms of the projection matrices and can solve the reconstruction problem

unambiguously.

• If only the intrinsic parameters are known, we can describe the epipolar geometry in the

essential matrix and solve the reconstruction problem up to an unknown scale factor by

estimating the extrinsic parameters.

• If neither intrinsic nor extrinsic parameters are known the epipolar geometry is described

by the fundamental matrix and we can still solve the reconstruction problem but only up

to an unknown, global projective transformation of the world.

Thus if a set of image corresponding points are given without the position, angular attitude

and calibration of the cameras then this situation is referred to as weak calibration, and the

epipolar geometry is described by the fundamental matrix and the scene may be reconstructed

up to a projective ambiguity.

If three images of a scene are available, and point correspondences are known across all three

views, then the above linear equations can be extended to three images and is called trifocal

tensor. In case of n views, one has many more images of a scene and the projective reconstruction

of n views can be done by factorization methods. The solution to the reconstruction problem

may only be determined up to an unknown projective transformation T, applied both to points

and cameras. A projective transformation for the model of 3D space containing world points

is given by,

X 7→ TX, (2.9)

where T is a non-singular 4 × 4 matrix representing a mapping between homogeneous coor-

dinates. From this relationship, it is seen that the determination of camera matrices Pi and

points Xj cannot be unique, given only corresponding image coordinates xij . Consider

xij = Pi Xj

= (Pi T
−1)(TXj)

= P′i X
′
j.

(2.10)

In this relationship, new points X ′j = T Xj are defined in terms of points Xj , and similarly

new camera matrices P ′i = Pi T
−1 in terms of the camera matrices Pi. Since both (Pi, Xj)

and (P ′i , X
′
j) give rise to the same projected image coordinates xij , there is no way to choose

between these two solutions to the reconstruction problem. In fact, there exists a complete

family of solutions to the problem, corresponding to all possible choices of the matrix T. All
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such solutions are related to each other by the application of a projective transformation, and

are hence called projectively equivalent. The above analysis does not rule out the possibility

that other solutions to this reconstruction problem exist, not related to a particular obtained

solution by any projective transformation. The standard factorization algorithms are Tomasi-

Kanade factorization [30] and Sturm-Triggs [22] methods. The link between projective depth

estimation and projective reconstruction of cameras and points was noted by Sturm and Triggs

(1996), whereby it is shown that given the true projective depths, camera matrices and points

can be found from the factorization of the data matrix weighted by the depths. Let us consider

the set of projective depths λip packed into a matrices, 3m × n rescaled measurement matrix

W that has rank at most 4. The matrix W can be factorized into a 3m×4 matrix of projection

multiplying a 4 × n matrix of points, and this factorization corresponds to a valid projective

reconstruction of n views using Singular Value Decomposition. This is given by the equation,

W≡


λ11 x11 λ12 x12 . . . λ1n x1n

λ21 x21 λ22 x22 . . . λ2n x2n

. . . . . .

λm1 xm1 λm2 xm2 . . . λmn xmn



=


P1

P2

. . .

Pm


[
X1 X2 ... Xn

]
.

(2.11)

2.2 Collineation

The transformation between projectively equivalent matrix is computer as collineation. The

projective reconstruction is done by chaining partial reconstructions that are obtained using

a 6-points procedure described in [14] or Sturm-Triggs iteration described in [22]. After the

process of reconstruction, triplets of projection matrices are obtained, which are related to the

correct (Euclidean) one by a collineation of the 3D space. Thus the true transformation can

be computed by a method called synchronization, which will be discussed in the later chapters.

The collineation between n sets of reconstructed matrices can be obtained only if they are

projectively equivalent matrices. Let us consider two sets of projective frames to understand

the process. A reference projective frame is fixed, that is the one associated to the first triple

{Pa, Pb, Pc}; subsequent triples with an overlap of two like {P ′a, P ′b, P ′d} can be brought to the

same frame by computing the proper collineation T. So let Pa and Pb be the same camera

in two different projective frames, i.e., P ′a and P ′b represents the same camera in two different

triplets. They are related by an unknown collineation T:

Pi T ' P′i. (2.12)
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In the next step, the elements of the matrices are reshaped to vector column-wise arrangement.

This is denoted by introducing the vec operator. Thus the equation can be rewritten as,

vec(Pi T) ' vec(P′i). (2.13)

Let us consider a and b two vectors of Rn be vec(P ′i ) and vec(Pi T ). Their equality up to a

scale can be written as: rank[a; b] = 1. This is to say that all minors of [a; b] are zero. There

are n(n-1)/2 of such order-two minors, and they can be obtained by multiplication of b by a

suitable n(n − 1)/2 × n matrix that contains the entries of a. Let us call this matrix [a]× in

analogy to the R3 case, where equality up to a scale reduces to a×b = 0. Since by construction,

a belongs to the null-space of [a]×, its rank is at most n - 1. Hence a ' b gives rise to the linear

system of n(n-1)/2 equations [a]×b = 0 where only n-1 of them are independent. The matrix

[a]× is composed by n-1 blocks arranged by rows. The the ith block Bi has (n - i) rows and n

columns (i = 1,...,n - 1):

Bi =


01×(i−1) −ai+1 ai 0 0 . . . 0

01×(i−1) −ai+2 0 ai 0 . . . 0

01×(i−1) −ai+3 0 0 ai . . . 0

. . . . . . . . . . . . . . . . . .

01×(i−1) −an 0 0 0 . . . ai

 (2.14)

[a]× =

 B1

B2

Bn−1

 (2.15)

Thus equality of two vectors vec(P ′i ) and vec(Pi T ) of Rn up to a scale can be written as,

[vec(P′i)]× vec(Pi T) = 0. (2.16)

Using the properties of the Kronecker product, the unknown vec(T) can be separated from the

previous equation as,

[vec(P′i)]× (I4×4 ⊗ Pi)vec(T) = 0. (2.17)

Since the coefficient matrix has rank at most 11, at least two camera matrices are needed to

stack-up the 15 equations required to compute the 4 x 4 matrix T up to scale. As said earlier,

this is the reason why the projective reconstruction needs triples of cameras with an overlap of

two matrices.
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Algorithm 1: Transformation

1 Objective

Given set of projective reconstructed matrices {P i
a,P i

b and P i
c} and {P j

a ,P j
b and P j

d}, if
two of the pairs of the sets are projectively equal then their transformation can be
computes as T .

2 Algorithm

(i) The projectively equal matrices are converted to vector by reshaping vec(P ′i ) and
vec(Pi T ) from the equation, vec(Pi T) ' vec(P′i).

(ii) Let a = vec(P ′i ) and b = vec(Pi T ), then [a]× is computed by,

Bi =


01×(i−1) −ai+1 ai 0 0 . . . 0
01×(i−1) −ai+2 0 ai 0 . . . 0
01×(i−1) −ai+3 0 0 ai . . . 0
. . . . . . . . . . . . . . . . . .

01×(i−1) −an 0 0 0 . . . ai

 ; [a]× =

 B1

B2

Bn−1

.

(iii) The transformation T is made into null space by rearranging the equation as,
[vec(P′i)]× (I4×4 ⊗ Pi)vec(T) = 0.

(iv) Single value decomposition is used and the eigenvector with smallest eigenvalue is
taken as vec(T ).

(v) Reshaping the vec(T ) into a 4× 4 matrix will give the final transformation T .



Chapter 3

Synchronization

In this chapter, we consider the method of synchronization, related work which is previously

done in the literature and finally the extended work done in this thesis. This chapter also gives

a brief explanation about graph theory and relates the idea of graph theory to synchronization

method.

3.1 Synchronization

This chapter deals with the problem of global {cameras|images |sensors |frames} network

{orientation|motion}. The network is made of cameras (or images, in Photogrammetry) and

cameras are sensors, of course; in abstract what matters is that a 3D reference frame (3 or-

thogonal axis with an origin) is attached to the sensor|camera|image that represent its position

and angular attitude. These two properties are collectively referred to as ”orientation” in Pho-

togrammetry or ”motion” in Computer Vision, if one consider discrete samples of a moving

camera. Mathematically orientation|motion is described by elements of the group of direct

isometries, SE(3) (a.k.a. special Euclidean group). Therefore the goal is to recover location

and/or attitude of a bunch of cameras|images|sensors organized in network. The links of this

network (edges of a graph) are relative measures of one cameras|images|sensors with respect

to (some of) the others. The ”global” adjective means that we are interested in solutions that

consider all the measurements at once, as opposed to ”incremental” approaches that grow a

solution by adding pieces iteratively (such as resection-intersection in the context of structure-

from-motion).

3.1.1 Related Work

This thesis work extends the work of Malapelle et al [19] (computing parallax maps from monoc-

ular and uncalibrated video sequences) and Arrigoni et al [3] (estimating camera motion in the

9
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context of structure-from-motion). Synchronization is a topic that connects with many field like

computer vision, sensor networks, automatic controls, robotics, graph theory (parallel rigidity),

topography/surveying. There are two different type of branch address this problem.

The threading methods treat the problem of finding an initialization of points as a searching

algorithm and generally determine a reference image from the set of images. The coordinate

frame of reference image acts as the projective frame. More complex threading methods are

based on finding paths in the topology graph. The corner stone of all threading methods is the

cost they impose on edges and paths: Kang et al. accumulate the residual error [16], Marzotto

et al. impose constraints on the ratio of overlapping area and residual error [21] for Structure

from Motion (SfM).

Batch approaches find a global solution by linearly approximating the motion model. For

instance, Govindu uses such an approach for SfM in order to build a linear system by quater-

nions [12] or Lie algebra [13]. Trying to solve a similar SfM problem, Sturm [29] using homo-

graphies as input to compute the initial rotation and translation for nonlinear optimization,

then factorization method, followed by averaging known rotations.

Several instances of synchronization have been studied in the literature:

• When considering Σ = Z2, we have sign synchronization [7].

• When considering Σ = R, we have time synchronization [11, 17] from which the term

“synchronization” was originated.

• When considering Σ = Rd, we have state / translation synchronization [25,32].

• When considering Σ = SO(d), we have rotation synchronization [1,5,6,10,15,18,20,27,28]

and also known as “rotation averaging”, which give rise to the Group synchronization

problem.

• When considering Σ = SE(d), we have rigid-motion synchronization [2, 4, 13, 24, 31, 33]

and also known as “motion averaging”, which can be seen as a stage of structure-from-

motion that starting from the epipolar graph to find globally consistent orientations or

motions for the cameras or images.

• When considering Σ = SL(d), we have homography synchronization [26].

• When considering Σ = Sd, we have permutation synchronization [23].
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3.2 Graph Theory

Let Σ be a group with unit element 1Σ and ~G = (V,E) be a finite simple digraph, with n = |V |
vertices and m = |E| edges. A Σ-labelled graph is a digraph with a labelling of its edge set by

elements of Σ, that is a tuple Γ = (V,E, z) where z : E → Σ is a labelling of the edges such

that if (u, v) ∈ E then (v, u) ∈ E and z(v, u) = z(u, v)−1. Hence, we may often consider G, the

undirected version of ~G. The cycle v1v2, v2v3 . . . v`v1 in Γ is null cycle if and only if,

z(v1,v2) · z(v2,v3) · . . . · z(v`,v1) := z(v1v2,v2v3, . . .v`v1) = 1Σ. (3.1)

(a) a (b) b

Figure 3.1: (a) Graph model and (b) Kirchhoff’s voltage law similar to graph model

The model of the graph is shown in the (Fig. 3.1a). Let Γ = (G, z) be a Σ-labelled graph for

G = (V,E) and x : V → Σ be a vertex labelling. Then x is a consistent labelling if and only if

for each edge e = (u, v) ∈ E we have

x(v) = x(u) · z(e) ⇐⇒ z(e) = x(u)−1 · x(v). (3.2)

The consistency error of x̃ is defined as,

ε(x̃) =
∑

(u,v)∈E

f(z̃(u,v) · z(u,v)−1). (3.3)

where z̃ is the edge labeling induced by x̃: z̃(u, v) = x̃(u)−1 · x̃(v). The labelled graph Γ

has a consistent labeling if and only if it contain only null cycles. In such case the graph is

called balanced or synchronized. The structure of the consistent labeling graph is similar to the

electrical analogy with the Kirchhoff’s voltage law. The directed sum of the electrical potential

differences (voltage) around any closed network is zero which is shown in the (Fig. 3.1b). The

edges with outlying labels are solved using the graph theory from Marek Cygan [ [9] and [8]].
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3.3 Synchronization in (Cd×d)

Synchronization method is extended to Cd×d in the thesis work. Let us assume now that we

are given a symmetric function f : Σ → Cd×d with a unique minimum at 1Σ and f(1Σ) = 0.

Suppose that Σ is a group which admits a matrix representation through d × d matrices (i.e.,

Σ can be embedded in Cd×d), where the group operation reduces to matrix multiplication and

1Σ = Id. Let U ∈ Cdn×d be the vector block matrices of Xu containing the vertex labels and

Z ∈ Cdn×dn be the block matrix Tu,v containing the edge labels. Thus two matrices U and Z

respectively, which are matrices composed of d× d blocks as,

U =


X−1

1

X−1
2

. . .

X−1
n

 , U−b =
[
X1, X2, . . . Xn,

]
, Z =


I T1,2 . . . T1,n

T2,1 I . . . T2,n

. . . . . .

Tn,1 Tn,2 . . . I

 (3.4)

For a complete graph, the consistency constraint rewrites

Z = UU−b. (3.5)

If the graph G is not complete, Z is not fully specified, or equivalently, it has zero entries

in correspondence of missing edges, whereas UU−b is fully specified, hence we shall write the

constraint as

(Z−UU−b) ◦ (A⊗ 1d×d) = 0. (3.6)

where A is the (0-1) adjacency matrix of G (with zero diagonal) and ◦ is the Hadamard product.

The previous equation can be rewritten as

ZA = (UU−b) ◦ (A⊗ 1d×d).. (3.7)

were ZA = Z ◦A represent the matrix of the available measures with zero entries in correspon-

dence of missing edges (and along the diagonal). The cost function of the synchronization is

given by,

ε(U) = ‖(Z−UU−b) ◦ (A⊗ 1d×d)‖2F. (3.8)

The Hadamard product with A mirrors the summation over the edges of E in the definition of

the consistency error.

3.3.1 Noiseless case

Let us consider the “noiseless” case, i.e. ε = 0, and let us start assuming that the graph is

complete, Since U ∈ Cdn×d then we have U−bU = nI. The rank of U is d and the equation is

given by,

Z = UU−b ⇐⇒ ZU = nU
∧ rank(Z)=d

. (3.9)
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the solution U is the eigenvectors of Z associated to eigenvalues n. Since Z have rank d, all the

other eigenvalues are zero, so n is the largest eigenvalues of Z.

3.3.2 Missing edges case

In the case with missing edges, the graph is not complete and the adjacency matrix A plays an

important role in solving the system,

ZA = (UU−b) ◦ (A⊗ 1d×d). (3.10)

The global symmetric matrix is given by,

ZA =


I A1,2 T1,2 . . . A1,n T1,n

A2,1 T2,1 I . . . A2,n T2,n

. . . . . .

An,1 Tn,1 An,2 Tn,2 . . . I

 (3.11)

where,

Ai,j =

1, if Ti,j is known.

0, otherwise.
(3.12)

The adjacency matrix A gets “inflated” by the Kronecker product with 1d×d to match the block

structure of the measures. we can rewrite the equation as,

ZA = (UU−b) ◦ (A⊗ 1d×d) = blkdiag(U)(A⊗ 1d×d) blkdiag(U−1). (3.13)

which implies that

ZAU = blkdiag(U)(A⊗ 1d×d) blkdiag(U−1)U = blkdiag(A1)U = (D⊗ I)U. (3.14)

where D = diag(A1) is the degree matrix of the graph (A1 is the sum of the rows of A). If

ε = 0, the solution U is the eigenvectors of (D⊗Id)−1ZA associated to the largest d eigenvalues

of (D ⊗ Id)−1ZA which are equal to 1’s.

(D⊗ Id×d)−1ZA = (D⊗ Id×d)−1(Z ◦ (A⊗ 1d×d))

= (D⊗ Id×d)−1 blkdiag(U)(A⊗ 1d×d) blkdiag(U−1)

= blkdiag(U)(D⊗ Id×d)−1(A⊗ 1d×d) blkdiag(U−1)

= blkdiag(U)[(D−1A)⊗ 1d×d] blkdiag(U−1)

(3.15)

Hence (D ⊗ Id)−1ZA and (D−1A) ⊗ 1d×d are similar, i.e., they have the same eigenvalues.

(D−1A) is the transition matrix of the graph which has 1’s as the largest eigenvalues. Thus if

the graph is connected, (D−1A)⊗ 1d×d also has 1’s as the largest eigenvalues.
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3.3.3 Noisy case

When noise is present, the minimum consistency error is not 0 and the eigen solutions are

the eigenvectors corresponding to λ1,λ2,...,λd as the largest eigenvalues of d. But due to noise

(D ⊗ Id)−1ZA and (D−1A) ⊗ 1d×d are not similar and so (D−1A) ⊗ 1d×d has λ < 1 with

multiple d as the largest eigenvalues.

Algorithm 2: Synchronization

1 Objective

Given the projective transformation between all the possible combination Tij which is
constructed to the global matrix Z, the decomposition with give the true
transformation U .

2 Algorithm

(i) For each projective transformation Tij , the matrices are arranged in the global
symmetric matrix Z ∈ Cdn×dn.

Z =


I T1,2 . . . T1,n

T2,1 I . . . T2,n

. . . . . .
Tn,1 Tn,2 . . . I


(ii) The adjacency matrix A is computed as,

Ai,j =

{
1, if Ti,j is known.

0, otherwise.

(iii) The matrix Z and A are converted to sparse and checked for the complete
connection of network.

(iv) The global symmetric matrix Z is updated by adding the information of A as,

ZA =


I A1,2 T1,2 . . . A1,n T1,n

A2,1 T2,1 I . . . A2,n T2,n

. . . . . .
An,1 Tn,1 An,2 Tn,2 . . . I


(v) (D ⊗ Id×d)−1 is computed where D is the sum of rows of A

(vi) Eigen decomposition for sparse matrix (D ⊗ Id×d)−1ZA is computed and eigen
values with maximum of 4 are taken as U .
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Algorithm

In this chapter, the development of the synchronization of projective frames algorithm is de-

scribed in detail. The theoretical and practical relation between projective reconstruction,

transformation and synchronization are composed in pseudo-code and flow chart. Finally we

represent the overall procedure for the proposed algorithm to be implemented. Later, the work

is motivated with the idea of application for static and dynamic cameras.

4.1 Algorithm structure

4.1.1 Methodology

A set of projective reconstructions between triples of cameras are computed from the correspon-

dence points as from Chapter 2. Each partial reconstruction is determined up to an unknown

projective transformation. The main goal of the work is to compute such unknown projective

transformations to bring all the partial reconstruction into the same reference system. Let

Ps = 3 × 4 be the projective matrix of camera s in a world reference system where we have

s = 1, 2, .., n. Then, the projective matrix of camera s in partial reconstruction i is given by

P i
s = 3× 4. The relation between P i

s and Ps is given by the equation,

Pi
s = PsTi, (4.1)

where, Ti = 4 × 4 is the unknown projective transformation that maps the world reference

system into partial reconstruction i. From the different combinations of partial reconstruction

we can obtain the relation between transformation T as,

Pi
s = PsTi;P

j
s = PsTj ⇒ Pj

s = Pi
sT
−1
i Tj, (4.2)

and,

Tij = T−1
i Tj, (4.3)

15
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here the projective transformation that maps reconstruction i into reconstruction j is given by

Tij . Tij can be computed from the equality of 2 vectors up to scale, assuming that reconstruc-

tions i and j share 2 cameras, this is discussed in detail in the previous Chapter 2. The matrix

of projective transformation is inverted when the direction is reversed.

Tij = T−1
ji . (4.4)

As discussed in the chapter 3 synchronization the graph G = (V,E) is constructed. Each vertex

corresponds to a partial reconstruction of 3 views and it is labeled with an known transformation

Ti. Each edges corresponds to an overlap of 2 cameras between 2 partial reconstructions, and

it is labeled with a unknown transformation Tij . The goal is to estimate vertex labeling, given

on edge labeling to estimate Ti given from a redundant set of Tij . It is solved by eigenvalue

decomposition method and this method is known as synchronization. Once Ti is known, several

projective matrix of the same camera can be computed by,

Ps = Pi
sT
−1
i andPs = Pj

sT
−1
j . (4.5)

From many Ps matrices, a final single Ps matrix is obtained by a simple matrix arithmetic

mean and this method is known as single averaging.

4.1.2 Flow chart

The algorithm is designed with different stages to fit the system. The input is given by the set

of images and output is obtained by the real projective matrices of the images. The flow chart

is shown in the (Fig. 4.1)

• In the stage one (Pre-processing), for each images 100 feature points are extracted with

strong corner using Harris corners method. All the sets of feature points are combined into

group of all combination of triplets which is easy for doing the projective reconstruction.

Point matching and RANSAC(algorithm detailed in Appendix B) algorithm are used to

compute the correspondence points of the triplets.

• In the stage two (reconstruction), the projective reconstruction is done from 3 views

that are obtained using a 6-points procedure described in [14] or Sturm-Triggs iteration

described in [22].

• In the stage three (transformation), the transformation of the projective matrices is com-

puted with 2 overlapping matrices. The transformation matrix is normalized my dividing

with the 4th root of the determent to make the determent 1, this forces the vertices of

the graph for a closed solution. Since the projective transformation have both complex

and negative eigen values, the normalized transformation matrix is complex. Then these

matrices are arranges in the global matrix as Z.
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• In the stage four (synchronization), the sparse eigen decomposition is computed with the

highest 4 eigen values are taken as U . To remove the complex values, U is divided by

the first block X1 with 4 × 4 matrix. By this way, the vector in the complex plane is

arranged in the same direction with different scaling. Now the scale is removed by using

least square method and the complex terms are removed.

• In the stage five (single averaging), the final computed transformation is multiplied with

each sets of reconstructed matrices, an arithmetic mean is made to get the real projective

matrix.

4.2 Applications

4.2.1 Dynamic camera

An approach based in dynamic motion of camera is analyzed here. Using Structure-From-

Motion method, with images or videos as input data advanced sensor fusion techniques can

be done with enhanced knowledge of orientation and tie-points computing epipolar or trifocal

geometry. More robust methods results in relative rotations and translations computation by

solving a motion synchronization problem can be studied by braking into rotation synchroniza-

tion or translation synchronization or solved both in one step. The global methods can be seen

as an effective and efficient way of computing path planning in robotics and 3D reconstruction

using the projective reconstructed matrices.

Figure 4.2: Path planning in robotics

4.2.2 Static camera

An approach based in static camera is analyzed here. Many real time application based on

surveillance camera for security purposes. Multiple eyed devices which is similar to the eyes of
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house flies, has the best application to the method. Devices like 360 degree cameras,etc can

be easily synchronized. Virtual reality techniques can be done with the application like video

games and live streaming system.

Figure 4.3: Eyes of house flies

Algorithm 3: Synchronization of Projective Frames

1 Objective

Given set of n uncalibrated images with both internal and external parameters of the
camera are unknown. The goal is to compute the global synchronized projective
matrices P̂1,P̂2...P̂n of all images n.

2 Algorithm

(i) For each images, feature points are extracted using Harris corners method.
(ii) All the sets of feature points are combined into group of all combination of triplets.(
n
k

)
= nCk = n!

k!(n−k)!

(iii) For each set of triplet, pairs of points set are used to get the correspondences of 2D
points { xi ↔ x′i ↔ x′′i } using matching point function and RANSAC fitting
fundamental matrix function.
(iv) A threshold value is set for i in complete sets { xi ↔ x′i ↔ x′′i } for selecting sets of
triplets as to reconstruct projective matrices we need atleast 6 points.
(v) From the selected triplets, projective reconstruction is made as P j

1 ,P j
2 and P j

3 ,
where j is the number is selected triplets.
(vi) The Transformation function is computed for the reconstructed matrices set as
nodes with T for two overlapping condition, I identity for same matrices and 0 zeros for
one overlapping condition. Thus the global matrix Z is computed.
(vii) The synchronization method is used to compute U .
(Viii) Compute the projective matrices after transformation. P̂n = Pm

n * U
(ix) Single averaging method is used to get the final Projective matrices P̂1,P̂2...P̂n
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Experiments & Results

In this chapter, we begin by describing the experimental setup for the proposed method. Then

the results of applying the method on the synthetic data is presented. For a unique setup, we

present a method to determine the change in the error to the ground truth value to understand

the system based on the noisy environment.

5.1 Setup

An implementation of the proposed methods in Matlab served for the experiments. We gen-

erated 100 normally distributed 3D points around the camera center. From camera setup, we

take a random radius of a sphere and the camera position is made to slide on the surface with

different internal parameters. A small change in the distance between the adjacent image is

make to make random translation. Then from the camera setup, we also randomly adjust ro-

tations to simulate different views for the camera. Thus our setup is made similar to a real

camera mounted on a tripod which has all the 3 degree of freedom for rotation and translation.

From those projected views and with the help of 3D points, we generate the image points for

each views. There is a percentage of missing points randomly selected. Later, this setup is

experimented by adding image noise for understanding the algorithm better.

5.2 Error Methods

Calculating the error is one of the important in the process. The difference between the ground

truth and the obtained value determines the error. We use three methods to compute the error

values,

5.2.1 Algebraic error

The algebraic error is the simplest method to determine the error in the probabilistic scale.

The method uses a simple Frobenius norm between the ground truth and the value obtained.

20
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The error is also called as residual error as it shows the minimized cost function. But this

error method does not give further information, it is used simply to determine the range of the

algorithmic difference.

5.2.2 Transformation error

Transformation error is used to determine the error between the sets of reprojected matrices

before and after the synchronization process with the ground truth set. This method also uses

norm between T and T’ (before and after the synchronization) which is calculated as described

in the chapter 2.

5.2.3 Reprojection error

In this method, the error involves estimating a correction for each correspondences of two

images. The process is done by comparing the difference between the real 2D points and

computed 2D points using the reconstructed projective matrices and transformed 3D points.

Then the difference between these correspondences points will give the error in the pixel range.

5.3 Synthetic experiments

We ran experiments on different levels of image noise [10−3 : 10] added to the image in pixel

range. Each experiment is repeated with 100 random runs with different setup for the data

collection. We used a setup composed of 20 different cameras for each setup. After collecting

data from different samples a simple mean shows the rate of change in reprojection error with

respect to noise. Here the experiment is tested by using all points in the visible range and

partial visible range. The graph (Fig. 5.1) shows the progressive error of full visible points

after 100 iteration of random samples. The “full visible points graph” uses a full measurement

matrix (all points are seen in all cameras) and thus includes also Sturm’s method [22]. Clearly

we can see that the synchronization method cannot compete with Sturm’s with a full matrix.

The next step is to compare with partial visible points. The “partial visible points graph”

(Fig. 5.2) refers to a more realistic situation where only some points are visible in each image.

In this case Sturm’s cannot be used and the benefits of synchronization can be appreciated

over Minimum spanning tree (A MST is a subset of the edges of a connected, edge-weighted

undirected graph (not necessarily connected) that connects all the vertices together, without

any cycles and with the minimum possible total edge weight and so it is a spanning tree whose

sum of edge weights is as small as possible) for moderate image noise. More (future) work is

needed to understand and fix the behaviour with large noise.
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Figure 5.1: Full visible points

Figure 5.2: Partial visible points



Chapter 6

Conclusions & Future Work

In this chapter, we conclusions about the thesis with the obtain results, give an overview of

the research work and the limitation of the methods. Along, with a discussion about possible

future work.

6.1 Conclusion

This thesis research is about the extended work for the synchronization problem, which has

been utilized for the projective reconstruction. Our method serves as a common base that

can be used for projective reconstruction problem with global interface. The work also gives a

description about computing the projective reconstruction, transformation and synchronization

in complex form with the working of the algorithm using synthetic data. Both the theoretical

and practical ideas discussed shows the robustness of the application with the algorithm.

The main feature of the algorithm is that the method is easier to implement on different hard-

ware and software environment with less power as the proposed analytical methods intended to

find a solution without an initialization and multiple iterative process. We tested this method

with its performance to the maximum limits of behavior under the influence of noise and miss-

ing data.

The limitation occur when there is not enough of triplets and if the graph is not completely

connected then there is a drift in the synchronization process. We also have the limitation in

the process of single averaging as some time one or more projective matrices of similar group

fall far away from the original reconstructed matrix . Even with these limitations, from the

experimental results showed that this approach is working well and output with satisfactory

results.

23



Chapter 6: Conclusions & Future Work 24

6.2 Future Work

The future work can be extended based on the theoretical and practical approach. The further

work are listed as follows,

• Based on the focus on the reconcilement of fundamental or essential matrices between

pair of views and the working on the viewing graph.

• Explore the analogy between computing epipolar scales and the reconcilement of essential

matrices, and try to extend it to fundamental matrices.

• In the case of essential matrices the scales are needed to bring the reconcilement into a

synchronization problem, so the varying scale can be determined.

• The method based on tracking the 3D points from the final projective matrix, this way

the relation between the image points and the projective matrices can be analyzed.

• An alternative idea of using the iterative methods, in the synchronization and the single

averaging method.

• This algorithm can be improved and implemented in the real time applications for the

devices that are embedded in automobile systems for tracking and navigation.



Appendix A

Transformation

Figure A.1: Projective Transformations (Image from [14])
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Appendix B

RANSAC

Algorithm 4: RANSAC Algorithm

Input : data - a set of observations
model - a model that can be fitted to data
n - the minimum number of data required to fit the model
k - the number of iterations performed by the algorithm
t - a threshold value for determining when a datum fits a model
d - the number of close data values required to assert that a model fits well to
data

Output: best model - model parameters which best fit the data (or nil if no good
model is found)
best consensus set - data points from which this model has been estimated
best error - the error of this model relative to the data

1 iterations := 0 ; best model := nil; best consensus set := nil; best error := infinity
2 while iterations <k do
3 maybe inliers := n randomly selected values from data
4 maybe model := model parameters fitted to maybe inliers
5 consensus set := maybe inliers
6 for every point in data not in maybe inliers do
7 if point fits maybe model with an error smaller than t then
8 add point to consensus set

9 if the number of elements in consensus set is >d then
10 (this implies that we may have found a good model, now test how good it is)
11 this model := model parameters fitted to all points in consensus set
12 this error := a measure of how well this model fits these points
13 if this error <best error then
14 (we have found a model which is better than any of the previous ones, keep it

until a better one is found)
15 best model := this model ; best consensus set := consensus set ;
16 best error := this error

17 increment iterations

18 return best model, best consensus set, best error

26
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